
Código Científico Revista de Investigación Vol. 6 – Núm.1 / Enero – Junio – 2025
708
información multimodal (como audio o sensores contextuales) y evaluar su desempeño en
entornos reales y diversos, considerando variabilidad ambiental y social.
Referencias bibliográficas
Ab Wahab, M. N., Nazir, A., Ren, A. T. Z., Noor, M. H. M., Akbar, M. F., & Mohamed, A. S.
A. (2021). EfficientNet-Lite and hybrid CNN-KNN implementation for facial
expression recognition on Raspberry Pi. IEEE Access, 9, 134065–134080.
https://doi.org/10.1109/ACCESS.2021.3113337
Ali, M. S., Hassan, A., Rahim, A., Ashraf, M. H., Rahim, A., & Saghir, S. (2023). Motor
imagery EEG classification using fine-tuned deep convolutional EfficientNetB0 model.
In 2023 3rd International Conference on Artificial Intelligence (ICAI) (pp. 1–6). IEEE.
Center for Research in Computer Vision. (n.d.). UCF-Crime dataset. University of Central
Florida. Retrieved March 18, 2025, from https://www.crcv.ucf.edu/research/real-
world-anomaly-detection-in-surveillance-videos/
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–
357. https://doi.org/10.1613/jair.953
Chen, L., Chen, J., Hajimirsadeghi, H., & Mori, G. (2020, March). Adapting Grad-CAM for
embedding networks. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV).
Freire-Obregón, D., Barra, P., Castrillón-Santana, M., & De Marsico, M. (2021). Inflated 3D
ConvNet context analysis for violence detection. Machine Vision and Applications,
33(1), 15. https://doi.org/10.1007/s00138-021-01264-9
Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., & Hong, C. S. (2020).
Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet of
Things Journal, 7(10), 10200–10232. https://doi.org/10.1109/JIOT.2020.2987070
Koonce, B. (2021). EfficientNet. In Convolutional neural networks with Swift for TensorFlow:
Image recognition and dataset categorization (pp. 109–123). Springer.
Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data
augmentation techniques. Global Transitions Proceedings, 3(1), 91–99.
Martínez-Mascorro, G. A., Abreu-Pederzini, J. R., Ortiz-Bayliss, J. C., & Terashima-Marín, H.
(2020). Suspicious behavior detection on shoplifting cases for crime prevention by
using 3D convolutional neural networks. arXiv preprint arXiv:2005.02142.
Mohanapriya, S., Saranya, S. M., Dinesh, K., Jawaharsrinivas, S., Lintheshwar, S., &
Logeshwaran, A. (2024). Anomaly detection in video surveillance. In 2024 15th
International Conference on Computing Communication and Networking Technologies
(ICCCNT) (pp. 1–5). https://doi.org/10.1109/ICCCNT61001.2024.10725557
Myagmar-Ochir, Y., & Kim, W. (2023). A survey of video surveillance systems in smart city.
Electronics, 12(17), Article 3567. https://doi.org/10.3390/electronics12173567