López-García, R., Muro-Pérez, G., López-Santiago, M. A., y Sánchez-Salas, J. (2023). Estudio 
etnobotánico de las bromelias útiles (Bromeliaceae) en el Valle de Juchipila, Zacatecas, 
México.  Ecosistemas  y  recursos  agropecuarios,  10(2). 
https://doi.org/10.19136/era.a10n2.3420 
Lowe, H. I., Toyang, N. J., Watson, C. T., Ayeah, K. N., y Bryant, J. (2014). Antileukemic 
activity of Tillandsia recurvata and some of its cycloartanes. Anticancer research, 34(7), 
3505-3509. 
Lucía, C. P. A., Jacqueline, B. R., Alberto, B. R. L., David, B. A., y Beatriz, R. A. (2021). 
Actualized  inventory  of  medicinal  plants  used  in  traditional  medicine  in  Oaxaca, 
Mexico.  Journal  of  Ethnobiology  and  Ethnomedicine,  17,  1-15. 
https://doi.org/10.1186/s13002-020-00431-y  
Mieles-Giler, J. W., Guerrero-Calero, J. M., Moran-González, M. R., & Zapata-Velasco, M. L. 
(2024).  Evaluación  de  la  degradación  ambiental  en  hábitats  Naturales. Journal  of 
Economic  and  Social  Science  Research, 4(3),  65–88. 
https://doi.org/10.55813/gaea/jessr/v4/n3/121 
Miranda-Nuñez, J. E., Zamilpa-Alvarez, A., Fortis-Barrera, A., Alarcon-Aguilar, F. J., Loza-
Rodriguez,  H.,  Gomez-Quiroz,  L.  E.,  ...  y  Blancas-Flores,  G.  (2021).  GLUT4 
translocation  in  C2C12  myoblasts  and  primary  mouse  hepatocytes  by  an 
antihyperglycemic  flavone  from  Tillandsia  usneoides.  Phytomedicine,  89,  153622. 
https://doi.org/10.1016/j.phymed.2021.153622  
Mishra,  S.,  y  Kumar,  T.  (2023).  Culture,  tradition,  and  indigenous  practices  on  medicinal 
plants.  Phytochemicals  in  Medicinal  Plants:  Biodiversity,  Bioactivity  and  Drug 
Discovery, 53. https://doi.org/10.1515/9783110791891-003 
Nazaruk,  J.,  y  Borzym-Kluczyk,  M.  (2015).  The  role  of  triterpenes  in  the  management  of 
diabetes  mellitus  and  its  complications.  Phytochemistry  Reviews,  14,  675-690. 
https://doi.org/10.1007/s11101-014-9369-x 
Okon, E., Gawel-Beben, K., Jarzab, A., Koch, W., Kukula-Koch, W., y Wawruszak, A. (2023). 
Therapeutic Potential of Anthracene Derivatives for Breast Cancer. Int. J. Mol. Sci., 24, 
15789. 10.20944/preprints202310.0625.v1  
Papini,  A.,  Mosti,  S.,  Milocani,  E.,  Tani,  G.,  Di  Falco,  P.,  y  Brighigna,  L.  (2011). 
Megasporogenesis  and  programmed  cell  death  in  Tillandsia  (Bromeliaceae). 
Protoplasma, 248, 651-662. https://doi.org/10.1007/s00709-010-0221-x  
Pulido-Esparza, V. A., López-Ferrari, A. R., y Espejo-Serna, A. (2004). Flora bromeliológica 
del estado de Guerrero, México: riqueza y distribución. Botanical Sciences, (75), 55-
95. https://doi.org/10.17129/botsci.1693  
Ramachandhiran, D., Vinothkumar, V., y Babukumar, S. (2019). Paeonol exhibits anti-tumor 
effects  by  apoptotic  and  anti-inflammatory  activities  in  7,  12-dimethylbenz  (a) 
anthracene  induced  oral  carcinogenesis.  Biotechnic  y  Histochemistry,  94(1),  10-25. 
https://doi.org/10.1080/10520295.2018.1493221  
Reddy, K. S. K., Chen, Y. C., Wu, C. C., Hsu, C. W., Chang, Y. C., Chen, C. M., y Yeh, C. Y. 
(2018). Cosensitization of structurally simple porphyrin and anthracene-based dye for 
dye-sensitized  solar  cells.  ACS  applied  materials  y  interfaces,  10(3),  2391-2399. 
https://doi.org/10.1021/acsami.7b12960